145 research outputs found

    Stereo visual-inertial odometry with an online calibration and its field testing

    Get PDF
    In this paper, we present a visual-inertial odometry (VIO) with an online calibration using a stereo camera in planetary rover localization. We augment the state vector with extrinsic (rigid body transformation) and temporal (time-offset) parameters of a camera-IMU system in a framework of an extended Kalman filter. This is motivated by the fact that when fusing independent systems, it is practically crucial to obtain precise extrinsic and temporal parameters. Unlike the conventional calibration procedures, this method estimates both navigation and calibration states from naturally occurred visual point features during operation. We describe mathematical formulations of the proposed method, and it is evaluated through the author-collected dataset which is recorded by the commercially available visual-inertial sensor installed on the testing rover in the environment lack of vegetation and artificial objects. Our experimental results showed that 3D return position error as 1.54m of total 173m traveled and 10ms of time-offset with the online calibration, while 6.52m of return position error without the online calibration

    Error Analysis of PDR System Using Dual Foot-mounted IMU

    Get PDF
    In this paper, we analyze the position errors of the pedestrian dead reckoning (PDR) system using foot-mounted IMU attached to each foot, and implement PDR system using dual foot-mounted IMU to reduce the analyzed error. The PDR system using foot-mounted IMU is generally based on an inertial navigation system (INS). To reduce bias and white noise errors, INS is combined with zero velocity update (ZUPT), which assumes that the pedestrian shoe velocity is zero at the stance phase. Although ZUPT could compensate the velocity and position, the heading drift still occurs. When analyzing the characteristics of the position error, the error shows a symmetrical characteristic. In order to reduce this error, the previous researches compensate for both positions by applying feet position constraints. The algorithm consists of applying a conventional PDR system to each foot and fusion algorithm combining both. The PDR system using foot-mounted IMU, one on each foot, is based on integration approach separately. The positions of both feet should be in a circle with a radius as step length during walking. The designed filter is constrained so that the position of both feet are in a circular boundary. The heading error that is symmetrically drifted is corrected by the position constraint when the pedestrian moves straight. Experimental results show the performance and usability of each previous algorithm to compensate for symmetric heading errors

    Autonomous Base Station Placement for Localization of the GNSS Interference Source

    Get PDF
    This paper presents the control strategy of autonomous base station placement for localization of the GNSS interference source. The proposed algorithm deals with the optimization of the base station trajectory for target motion analysis based on bearing only tracking problem. The control strategy of the proposed algorithm is designed to maximize a cost function which is generally a functional of the Fisher information matrix. Compared to the optimal control methods, the proposed algorithm is easy to be designed and implemented, and constraints of multiple base stations’ trajectories can be effectively included. In addition, the proposed algorithm also considered target’s dynamics that is both uncertain and random, and there are multiple base stations for observing the target. In order to verify the performance of the proposed algorithm, simulation was performed with dynamic target case in the 2D scenario. It is assumed that the base stations’ networks have non-fully connected topology. According to the simulation results, it was confirmed that the proposed algorithm presents a flexible control strategy of autonomous multiple base stations’ placement for bearing only target tracking system

    Integration of Inertial Navigation System with EM-log Using H-infinity Filter

    Get PDF
    This paper presents the integration of inertial navigation system (INS) with electromagnetic-log (EM-log) as an underwater navigation system using H-infinity filter for robustness from the uncertainty of the sea current model. In underwater environments, the electromagnetic signals are attenuated rapidly, so that the global navigation satellite system is not available in general. Thus, INS is usually chosen for underwater navigation, and other aiding sensors are also used to complement its accumulative errors, one of which is EM-log. Since an EM-log provides the relative velocity to seawater, the integrated navigation cannot be performed accurately unless the sea current speed is compensated properly. Generally, the INS and EM-log can be integrated using extended Kalman filter (EKF). However, EKF guarantees its performance when the stochastic properties of the system’s process and measurement noises are perfectly known. In other words, in the presence of sea current modelling errors, the integration using the EKF is not expected to show good performance. On the other hand, H-infinity filter is a robust filter which can tolerate such uncertainties. In this paper, the integration of INS and EM-log using H-infinity filter is studied. The performance is compared with that of the EKF case by proper computer simulation

    Pharmacokinetics of Amitriptyline Demethylation;A Crossover Study with Single Doses of Amitriptyline and Nortriptyline

    Get PDF
    A single dose crossover pharmacokinetic study of amitriptyline and nortriptyline was done to find out the extent of first-pass metabolism to nortriptyline after amitripyline administration, and the contribution of nortriptyline during amitriptyline therapy. Six healthy male volunteers took part in this study and were given single doses (50 mg) of amitriptyline and nortriptyline at more than three-week intervals. Plasma concentrations of the drugs were measured up to 48 hours. Total area under the plasma concentration-time curve (AUe) of amitriptyline (744.6±258.4 ng/ml·hl was smaller than that of nortriptyline (l497.3±589.8 ng/ml'h), and the mean terminal half-life of amitriptyline (21.8±3.9 hr) was shorter than that of nortriptyline (36.8±5.9 h). The total area under the plasma concentration-time curve of nortriptyline produced by amitriptyline administration was 498.1 ±274.5 ng/ml·h, and the fraction produced by the first-pass of amitriptyline was 33.7 ± 10.5%. From this data, it can be estimated that the average nortriptyline concentration could be about 40% of the total tricyclic antidepressants present in the plasma of patients taking multiple amitriptyline therapy at steady state. About 34% of nortriptyline is produced by first- pass effect during gastrointestinal absorption of amitriptyline to systemic circulation resulting from N-demethylation of amitriptyline in the liver. Then, the rest of the nortriptyline is formed continuously at a rate proportional to the rate of amitriptyline elimination

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Mammalian Ste20-Like Kinase and SAV1 Promote 3T3-L1 Adipocyte Differentiation by Activation of PPARγ

    Get PDF
    The mammalian ste20 kinase (MST) signaling pathway plays an important role in the regulation of apoptosis and cell cycle control. We sought to understand the role of MST2 kinase and Salvador homolog 1 (SAV1), a scaffolding protein that functions in the MST pathway, in adipocyte differentiation. MST2 and MST1 stimulated the binding of SAV1 to peroxisome proliferator-activated receptor γ (PPARγ), a transcription factor that plays a key role in adipogenesis. The interaction of endogenous SAV1 and PPARγ was detected in differentiating 3T3-L1 adipocytes. This binding required the kinase activity of MST2 and was mediated by the WW domains of SAV1 and the PPYY motif of PPARγ. Overexpression of MST2 and SAV1 increased PPARγ levels by stabilizing the protein, and the knockdown of SAV1 resulted in a decrease of endogenous PPARγ protein in 3T3-L1 adipocytes. During the differentiation of 3T3-L1 cells into adipocytes, MST2 and SAV1 expression began to increase at 2 days when PPARγ expression also begins to increase. MST2 and SAV1 significantly increased PPARγ transactivation, and SAV1 was shown to be required for the activation of PPARγ by rosiglitazone. Finally, differentiation of 3T3-L1 cells was augmented by MST2 and SAV1 expression and inhibited by knockdown of MST1/2 or SAV1. These results suggest that PPARγ activation by the MST signaling pathway may be a novel regulatory mechanism of adipogenesis
    corecore